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The “carrier-confinement” model for phase-separated dilute magnetic semiconductors is proposed, in which
the carrier scattering by ferromagnetic strings embedded into a semiconductor host leads to the appearance of
quasi-one-dimensional spin-polarized states inside the energy gap of the three-dimensional spectrum. Quasi-
particle excitations from these states to the band edge mediate an efficient interstring exchange even in the
absence of free carriers in the host. The related exchange integral can switch between ferromagnetic and
antiferromagnetic with varying both the interstring distance and the filling of the quasi-one-dimensional spin-
polarized states. We discuss the applicability of our model for the description of the magnetic behavior of the
array of Mn-rich nanocolumns inserted into a Mn-depleted host in phase-separated �Ge,Si�:Mn alloys.
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I. INTRODUCTION

There exist compelling evidence for magnetic order in
group-IV semiconductors �SC=Ge,Si� dilute alloys with
3d-transition metals, but its origin is still controversial. Mul-
tiple studies reveal that magnetism may not be the intrinsic
property of these dilute magnetic semiconductors �DMSs�,
but rather arises from magnetic peculiarities of clusters en-
riched in transition metals �contaminants, containing ger-
manides or silicides of the transition metal� in the SC matrix,
which appear due to the phase separation.

For Ge-based DMS, ferromagnetic �FM� order up to 110
K has been reported in Ge1−xMnx grown by molecular-beam
epitaxy �MBE� at x=0.033 and attributed to MnnGem FM
nanoclusters �of typical size of 2–6 nm� with higher Mn
concentration �10–15 %� than in the surrounding matrix,
rather than to isolated Mn impurities in the Ge host.1 The FM
transition at Tc=285 K and the antiferromagnetic �AFM�
transition at Tn=150 K were reported in highly Mn-doped
�up to 6%� Ge single crystals obtained by solid solutions.2

On the other hand, to interpret the results on the magnetic
coupling in Ge:Mn, Li et al.3 proposed to introduce two dif-
ferent temperatures for FM ordering, Tc

� and Tc. The higher
critical temperature Tc

� marks the onset of local ferromag-
netism, whereas the global ferromagnetism takes place only
at a much lower transition temperature Tc. The values of Tc
found for a sample with 5 at. % Mn are on the order of 10 K
�while the values of Tc

� are on the order of 300 K�, which
indicates that Ge1−xMnx is far from being a high-Tc DMS.
Moreover, according to Ref. 3, transport measurements re-
vealed the insulating behavior of Ge1−xMnx over the entire
temperature range considered, so that the Fermi level is lo-
cated below the mobility edge of the Mn-induced impurity
band. Gareev et al.4 reported that indirect FM exchange in
Ge:�Mn,Fe� insulating-type DMS is mediated by localized
holes with concentration n=1020 cm−3 and mobility �
=10 cm2 / �V s�. The authors of Ref. 5 provided insights into

the correlation of the magnetic and structural properties of
Ge0.95Mn0.05 films fabricated with low-temperature MBE.
The individual Mn5Ge3 nanoprecipitates turn FM and carry
large magnetic moments, which react freely to an external
applied field, like a superparamagnet. Recent photoelectron
emission, x-ray-absorption spectroscopy, and magnetization
measurements on Ge0.96Mn0.04 single crystalline films have
shown the coexistence of substitutional Mn atoms and
Mn5Ge3 or Mn11Ge8 nanoprecipitates, dispersed in the Ge
host.6,7

For Si-based DMS, the above room-temperature ferro-
magnetism has been achieved in Mn ion implanted Si with
Mn concentrations of 0.1–0.8 at. %.8 The x-ray-absorption
studies indicate that Mn ions in these systems are located
neither in the substitutional nor in the interstitial position of
the Si lattice and form clusters with five to eight nearest-
neighbor atoms.9 On the other hand, there were no indica-
tions for Mn substituting Si, either in the as-implanted or in
the rapidly annealed samples, and the observed ferromag-
netism with a saturation moment of 0.21�B per implanted
Mn ion was attributed to MnSi1.7 nanoparticles �of typical
size of 5–20 nm�.10 The Curie-Weiss law for the magnetic
susceptibility was observed in Mn-doped amorphous
a-Si1−xMnx �0.005�x�0.175� films, but with extremely
small total moment; the measurements suggest that only a
small part of Mn ions contributes to the magnetization and
the moments are quenched for the majority of Mn ions.11

Strictly speaking, it may be difficult to unambiguously
distinguish strongly inhomogeneous DMS containing inter-
metallic compounds or Mn-rich clusters from a proper spa-
tially uniform material in �Ge,Si�1−xMnx alloys with Mn
contents of a few percent. However, it was recently estab-
lished by independent groups of investigators that, in low-
temperature MBE as-grown �Ge,Si�1−xMnx alloys, the dop-
ant exhibits a remarkable tendency toward self-organization
into arrays of Mn-rich clusters �“nanocolumns” or
“nanopipes”� in the Mn-depleted matrix.12–15 In Ref. 12, the
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Si1−xMnx films with 0.005�x�0.035 grown on a Si�100�
substrate were investigated using reflection high-energy elec-
tron diffraction. It was demonstrated that at small Mn content
and low growing temperature, Mn-rich nanometer-sized nod-
ules form near the bottom of the film and seed the formation
of vertical nanopipes extended to the surface. Unfortunately,
no detailed information on the average diameter of the nan-
opipes and internanopipe distance was communicated. In
Refs. 13 and 14 structural and magnetic properties of
Ge1−xMnx films with 0.01�x�0.11 grown on a Ge�001�
substrate were investigated by transmission electron micros-
copy, electron energy-loss spectroscopy, and x-ray diffrac-
tion. The formation of Mn-rich nanocolumns embedded into
a nearly pure Ge matrix was reported. The nanocolumns
have a fairly uniform size distribution with an average col-
umn diameter of 3 nm and a pair-correlation length of 10
nm; FM ordering at T�400 K and giant positive magne-
toresistance �MR� were observed in this system.

On the other hand, magnetic and transport features in the
phase segregated Ge1−xMnx alloys are extremely sensitive to
the precise location and distribution of the magnetic
dopant.15 In the as-grown material, FM columns are embed-
ded into a crystalline Ge matrix in which substitution accep-
tors and interstitial donors are almost perfectly compensated.
These insulating materials exhibit AFM interaction between
adjacent columns and giant positive MR. The dopant atoms
are redistributed upon postannealing, resulting into an in-
crease in the concentration of uncompensated acceptors,
which provides a FM coupling between adjacent columns
and global ferromagnetism with small negative MR.

In this work, we discuss a mechanism for the formation of
the magnetic order within a self-organized nanocolumn and
for the global magnetic ordering in the phase-separated di-
lute �Ge,Si�:Mn alloys with a columnar topology, accounting
for the results of Refs. 12–15. We first consider a model
which takes into account the main ingredients to describe the
physics of an isolated nanocolumn embedded into a semi-
conducting host, approximated as an ideal FM string. These
are the charge redistribution in the matrix around the nano-
column, the hybridization between the host and the dopant
electron states, and the intra-atomic Coulomb interactions of
two electrons within a dopant ion, which is the driving force
of magnetism. We then derive an approximate Hamiltonian
which describes the coupling of the host electron states to a
FM string, and consider a model of two parallel FM strings
embedded into the insulating matrix, to clarify the mecha-
nism of exchange coupling between strings and describe its
dependence on the interstring distance and on the Fermi-
level position.

II. MODEL FOR A FM STRING IN A SEMICONDUCTING
MATRIX

To describe the occurrence of ferromagnetism within an
isolated nanocolumn, we introduce a model which treats the
nanocolumn as an ideal one-dimensional string of dopant
ions and accounts for the relevant degrees of freedom, while
neglecting orbital degrees of freedom, which are responsible
for the higher value of the FM spin, resulting from Hund’s

rule within the d orbitals, but do not play an important role in
the formation of a ferromagnetic state. The position vector
within our system is R= �r ,z�, with z parallel to the string,
which is located at r=0. The corresponding wave vector is
K= �k ,��.

Having in mind to discuss here the general mechanism for
the onset of magnetism, rather than the quantitative details,
for simplicity, we consider the situation in which the SC
valence band is deep, and will be ignored, whereas the con-
duction band, arising from a single s orbital, can be reason-
ably described, within an effective-mass approximation, by
the Hamiltonian

Hs = �
k

�
�

�
�

��K�sk,�;�
+ sk,�;�, �1�

where sk,�;�
�+� annihilates �creates� an electron with wave vec-

tor K= �k ,�� and spin projection �= ↑ ,↓, and the
conduction-band spectrum is

��K� =
k2

2m�
� +

�2

2m�
� � ���k� + ����� . �2�

The Hamiltonian of an ideally isolated string is

Hd = �
�

�
�

�dd�;�
+ d�;� + I�

i

nd,↑�zi�nd,↓�zi� , �3�

where d�;�
�+� annihilates �creates� an electron with wave vector

� and spin � on a d orbital of the string. For simplicity, we
assume a single orbital. We also neglect the small overlap of
d orbitals at different sites along the string, taking a disper-
sionless level �d. This assumption does not play a relevant
role since d electrons become mobile mainly due to the hy-
bridization with the SC s orbitals. The interaction between
two electrons in the same d orbital, which is the driving force
of magnetism, is described by the Hubbard term of strength
I. We assume that the electrons are localized at the sites zi
�with ri=0�, and nd,��zi� represents the number of d electrons
with spin � on a given site along the string.

When the string is inserted into the SC matrix, various
effects arise. Those which are relevant to the formation of a
spin-polarized state are the hybridization between the elec-
tron state of the dopant and of the SC host �in our model, s-d

hybridization�, Ṽ�r ,z−z��, and the modulation of the local

chemical potential Ũ�r�, ruling the charge redistribution
within the SC matrix around the string. Both effects preserve
the translational invariance along the string. The simplest
approximation consists of describing these effects as contact
terms at r=0 and z=z�, corresponding to the Hamiltonians

Hs-d =
1

�N�

�
k

�
�

�
�

�Ṽd�;�
+ sk,�;� + H.c.� , �4�

Hloc =
Ũ

N�
�
k,k�

�
�

�
�

sk,�;�
+ sk�,�;�, �5�

where N� is the number of k values allowed within the first
Brillouin zone by the boundary conditions. The first term
describes a set of independent two-dimensional Anderson
models, labeled by the dummy index �.
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We treat the Hubbard term in the Hartree approximation,
and factorize the interaction as nd,↑�zi�nd,↓�zi�→nd,↑nd,↓�zi�
+nd,↓nd,↑�zi�−nd,↑nd,↓, where nd,�= �nd,��zi�� is the average
number of electrons with spin � in a d orbital. This yields
two spin-dependent Hartree d levels �d,�=�d+ Ind,−�.

The quantum-mechanical problem associated with the
Hamiltonian Hs+Hd+Hs-d+Hloc, with the Hubbard term
linearized after the Hartree factorization, can be dealt with by
standard techniques, which yield the Green’s functions

Gdd =
Ũ�1 − D̃�Gdd

0

Ũ�1 − D̃� − 	Ṽ	2D̃Gdd
0

, �6�

Gss�k,k�� = Gss
0 �k��k,k� +

Ũ

N�

Gss
0 �k�Gss

0 �k��

�
Ũ + 	Ṽ	2Gdd

0

Ũ�1 − D̃� − 	Ṽ	2D̃Gdd
0

, �7�

where an implicit diagonal dependence on �, on the �com-
plex� frequency 	, and on the spin index � is understood.
Here, Gdd

0 = �	−�d�−1 is the Green’s function of an ideally
isolated string, Gss

0 �K�= 
	−���k�−������−1 is the Green’s
function of the electrons in the bulk SC, and

D̃ �
Ũ

N�
�
k

Gss
0 �K� = ũ ln�1 +




����� − 	
 . �8�

We introduced the dimensionless parameter ũ

�−a2m�
� Ũ / �2��2�, a is a lattice spacing, and 


��2 / �2m�
� a2� is a bandwidth cutoff for the two-dimensional

band ���k�. The equation D̃=1 describes one-dimensional

bound states �for Ũ�0, i.e., ũ�0� or antibound states �for

Ũ�0, i.e., ũ�0� formed near the edge of the SC bulk con-
duction band due to the charge redistribution around the
string. These states are localized in the directions perpen-
dicular to the string, but propagating along the string. In this
paper, we treat the case ũ�0, when bound states at energies
�̄���=�����−
�e1/ũ−1�−1 are split off the bottom of the SC
conduction band. At weak coupling, ũ1 and �̄���������
−
e−1/ũ; at strong coupling, ũ�1 and �̄��������−
ũ. In
the following, we do not need the expressions of the Gsd and
Gds Green’s functions.

The s-d hybridization removes the poles of the Green’s
function Gss at �̄��� and promotes instead one-dimensional
s-d bands, which appear as poles of Gdd and Gss�k ,k��. Un-
fortunately, we could not obtain simple analytical expres-
sions for the momentum-integrated Green’s functions

Ḡdd�	� =
1

N�
�
�

Gdd, �9�

Ḡss�	� =
1

N�
�
k,�

Gss�k,k� , �10�

where N� is the number of � values allowed within the first
Brillouin zone by the boundary conditions. The sums over �

were then performed numerically over a closely spaced
mesh.

The densities of states are then found as N��	�
=− 1

� Im Ḡ���	+ i��, with �=s ,d and �=0+. In our numerical
analysis we take � /W=10−3, where W is the bandwidth cut-
off. This value is at least 2 orders of magnitude smaller than
the other dimensionless energy scales.

For numerical simplicity, we work at fixed chemical po-
tential � and zero temperature. When the system is spin po-
larized, the number of electrons with spins ↑ and ↓ is differ-
ent and the source of this unbalance is self-consistently
related to the splitting of the d level, �d,�=�d+ Ind,−�. Let us
indicate with N�

��	� the density of states �DOS� for spin �,
which depends self-consistently on nd,−�. Then, the two
coupled self-consistency equations which determine nd,�
have the form

nd,� = �
−�

�

d	Nd
��	� , �11�

with �= ↑ ,↓. By expressing, e.g., nd,↓ as a function of nd,↑
and then substituting into the equation for nd,↑, the two equa-
tions are decoupled, and a single equation of the form nd,↑
=F�nd,↑� is obtained, which can be efficiently solved, e.g., by
iterative bisection. The procedure is lengthy since Nd

��	� has
to be numerically evaluated at each step due to the lack of a
simple analytical expression.

Once the self-consistent value of nd,↑ is found, one can
proceed with the straightforward evaluation of nd,↓ and

ns,� = �
−�

�

d	Ns
��	� . �12�

Similarly, the thermodynamic grand-canonical potential can
be calculated as

� = �
�=s,d

�
�=↑,↓

�
−�

�

d	�	 − ��N�
��	� − Ind,↓nd,↑, �13�

where the last term is subtracted to avoid double counting of
the Hartree energy.

For the sake of definiteness, we adopted the set of param-

eters �d /W=−0.5, ũ=1.0, 	Ṽ	2 / �	Ũ	W�=0.25, and 
 /W
=2 /3, and we studied the properties of our model for varying
� /W and I /W. The zero energy level is fixed at the bottom of
the three-dimensional �3D� SC conduction band ��K��0.
Since there are no free particles in the system to fill the 3D
SC conduction band, only the case ��0 is relevant.

We define the partial magnetizations md=nd,↑−nd,↓ and
ms=ns,↑−ns,↓, and the total magnetization mtot=md+ms. In
Fig. 1 we show the phase diagram. At small I /W the system
is paramagnetic �PM�, but with increasing I /W the system
eventually enters the spin-polarized phase. For the chosen set
of parameters, at small 	�	 /W, this spin-polarized phase is
ferrimagnetic �fm� with s spins antiparallel to d spins �i.e.,
mdms�0�. With increasing 	�	 /W, the number of minority s
spins is reduced and the system is gradually turned into a
ferromagnet �with mdms�0�. The line ms=0, which sepa-
rates the ferrimagnet and the ferromagnet, is shown as a
dotted line in Fig. 1. For even larger 	�	 /W the system be-
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comes fully polarized, with the lower majority-spin band full
and the lower minority-spin band empty. The line marking
the onset of the fully polarized state is drawn as a thin line in
Fig. 1.

In Fig. 2 we show the magnetization and thermodynamic
potential at � /W=−0.45, when the system exhibits all the
possible behaviors, for the chosen set of parameters. The
dashed line represents the partial magnetization ms, which is
opposite to md �solid line� close to the PM-fm transition,
vanishes at the fm-FM transition, and saturates, together with
md, at where the fully polarized ferromagnetic �FFM� state is
formed. The full magnetization is represented by the dotted
line. The thermodynamic potential of the spin-polarized
phase continuously joins the thermodynamic potential of the
PM phase, since for the chosen value of the chemical poten-
tial the transition is of second order.

In Fig. 3 we show the DOS. The paramagnetic phase is
found as metallic or insulating, depending on whether the
Fermi energy crosses the upper or lower band, or is located
in the gap between the two. The ferrimagnetic and ferromag-
netic phases are half metallic, with the Fermi energy located
within the minority-spin lower band, whereas the majority-
spin lower band is full. The fully polarized ferromagnetic
phase is insulating, with the Fermi energy located within the
gap between the minority-spin lower band �empty� and the
majority-spin lower band �full�.

So far, we have investigated the mechanism for the onset
of a FM state within an isolated string embedded into a SC
host. To proceed further in the analysis of the mechanism for

exchange coupling between two strings, we need to adopt
some simplifying assumptions. In general, from the point of
view of the electron states in the host, the coupling between
the SC host and an isolated string is described by a

frequency-dependent self-energy �ss�	�= Ũ+ 	Ṽ	2Gdd
0 �	�,

which can be read off Eq. �7�. Within a rotationally invariant
formulation, referred to a local spin-quantization axis, the
self-energy can always be separated into a potential and an
exchange part, �ss�	�=�ss

0 �	��0+�ss��� ·�, where �0 is the
unity matrix and � is the vector of Pauli matrices.

The dynamical part of the self-energy describes the effect
of charge and spin fluctuations within the string. In the fol-
lowing, we neglect the effect of these fluctuations and as-
sume that a static approximation is sufficient to qualitatively
estimate the energy of coupling between the string and the
host. This amounts to treat the string as a classical object.
When the self-energy �ss�	� is calculated at 	=0, the
Green’s function Gss becomes the Green’s function of a
Bloch electron in an external field V, which describes the
effect of the string. Together with the self-energy, the exter-
nal field has a potential and an exchange part, V=−�U�0
+JM ·��, where matrix elements of effective interaction be-
tween the string and the host �U and J� are merely treated as
phenomenological parameters, and M is the magnetic mo-
ment of the string.

III. EXCHANGE COUPLING BETWEEN TWO FM
STRINGS

Let us now introduce an effective model to describe the
system of two parallel FM strings embedded into a crystal-

4

3

2

1

0.70.60.50.40.30.20.10.0

PM

fm

FM

FFM

I/
W

|µ|/W

FIG. 1. �Color online� Phase diagram of the Anderson-type
model for a d-metal string embedded into a bulk SC. The param-

eters are taken as �d /W=−0.5, ũ=1.0, 	Ṽ	2 / �	Ũ	W�=0.25, and

 /W=2 /3. The label PM indicates the paramagnetic phase, which
can be metallic or insulating depending on the value of the chemical
potential; the label fm indicates the ferrimagnetic phase, which is
half metallic; and the label FM indicates the ferromagnetic phase,
which is half metallic. The label FFM indicates a saturated ferro-
magnetic phase, which is insulating. The continuous line separating
the PM phase from the various spin-polarized phases marks a
second-order transition, whereas the dashed line corresponds to a
first-order transition. The lines separating the fm and FM phases
and the FM and FFM phases mark continuous changes without
symmetry breaking.
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FIG. 2. �Color online� Magnetization curves �left panel: dashed
line for ms, solid line for md, and dotted line for mtot; the shaded line
marking the zero value characterizes the PM phase� and grand-
canonical thermodynamic potential �right panel: solid line for the
spin-polarized phases, and shaded line for the PM phase� for the
same parameters as in Fig. 1 and � /W=−0.45. For this value of the
chemical potential, and the chosen set of parameters, all the pos-
sible regimes of the model are found, as it can be seen from Fig. 1.
The system is PM �with ms=md=mtot=0� for I /W�0.38, fm �with
msmd�0� for 0.38� I /W�1.1, FM �with msmd�0� for 1.1
� I /W�3.7, and FFM �with mt=1� for I /W�3.7. The second-
order PM-fm transition, at which md, ms, and mt simultaneously
vanish, and the thermodynamic potential of the spin-polarized
phase �solid line in the right panel� merges with the thermodynamic
potential of the PM phase �shaded line in the right panel�.
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line SC host. The Hamiltonian H of the Bloch states of the
SC, which are annihilated �created� by the operator s�+�, is
written as

H = H0 + V�+ �/2� + V�− �/2� , �14�

where

H0 = �
K,�

��K�sK,�
+ sK,�, �15�

is the Hamiltonian of a bulk SC in the absence of the FM
strings, ��K� is the corresponding quasiparticle spectrum,
and

V���/2� = − �
K,K�

�
�,��

sK,�
+ �UK,K����/2���,�� + JK,K����/2�

�
� · M���/2���,��� � sK�,�� exp
�i�k

− k�� · �/2� �16�

describes the interaction of the SC host with two parallel FM
strings directed along the z axis and intersecting the plane
perpendicular to the z axis at the points r= �� /2. We use
here the same notation for position vectors and wave vectors,
adopted in Sec. II.

As we discussed in Sec. II, we treat the spin density of the
strings as classical. Therefore, the vector M��� /2� repre-
sents the mean magnetization of the “right” �+� /2� and
“left” �−� /2� strings. We assume the vectors M��� /2� to be
directed either parallel or antiparallel to the z axis:
M��� /2�=Mn�, where n� are unit vectors. For the sake of
simplicity, we also assume the interaction V��� /2� to be
homogeneous in the z direction and local in the perpendicu-
lar plane, so that UK,K���� /2�=U��,�� and JK,K���� /2�
=J��,��.

Let us analyze the system within a single band approach.
The Green’s function associated with Hamiltonians
�14�–�16� is given by

G����K,K�,	� = �K,K���,��G
0�K,	�

+ ��,��G
0�K,	�T����K,K�,	�G0�K�,	� ,

�17�

where G0�K ,	�= 
	−��K��−1 is the Green’s function of the
bulk SC, and the additional term appears due to the interac-
tion V��� /2� with the strings, whose expression is found in
Eq. �16�. Here T����K ,K� ,	�=Q����K ,K� ,	� /��� ,	� is
full t matrix of the multiple scattering of carriers by two
parallel strings inserted in the SC host. The explicit expres-
sion for the numerator Q is lengthy and will be omitted since
it plays no role in the forthcoming discussion. The determi-
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(c) (d)

FIG. 3. �Color online� DOS in units of W for the same parameters as in Fig. 1 and � /W=−0.6, I /W=0.5 �top left�, corresponding to a
PM metallic phase; � /W=−0.3, I /W=2.0 �top right�, corresponding to a fm half-metallic phase; � /W=−0.5, I /W=1.0 �bottom left�,
corresponding to a FM half-metallic phase; and � /W=−0.6, I /W=3.0 �bottom right�, corresponding to a FFM insulating phase. The values
of the DOS for majority and minority spins are plotted with positive and negative signs, respectively. The solid curves represent the full
DOS. The s and d contributions are represented by the thin lines. The s contribution is weaker in the lowest band and stronger in the other
bands.
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nant in the denominator of the t matrix may be written as

� = D2 − 2g2�K2 + J2M2C� + g4�U2 − J2M2�2, �18�

where

D = 1 − �U + K�g0 = �1 − Ug0�2 − J2M2g0
2, �19�

g0 = g0��,	� � �
k

G0�K,	� , �20�

and

g = g��,	� � �
k

G0�K,	�exp�ik · �� . �21�

The poles of the t matrix give the single-particle spectrum
of the system. It should be noted that the determinant � 
Eq.
�18�� depends parametrically on both the mutual orientation
of the magnetic moments of the strings 
C= �n+ ·n−�� and on
the distance between them ���	�	�. Since we consider the
case when the Fermi level is located inside the SC band gap,
only the solutions of the equation ��	�=0 with negative
energies �	�0� will be discussed below.

If the interstring distance tends to infinity, �→� �accord-
ingly, g→0�, the isolated string limit is recovered. As we
discussed in Sec. II, in the system with a short-range attrac-
tive potential of a linear defect, there is a localized state for
a particle moving perpendicular to the defect axis. If the
defect is magnetic, the twofold spin degeneracy of this state
is removed due to the exchange interaction. In the case of the
single string with U�0 and JM �0, the spectrum is simply
given by the equation D�	�=0, i.e., g0

−1�� ,	�=U�JM. In
what follows, for the sake of definiteness, we assume that
	U	� 	JM	, as it is commonly the case.

In the case of the two-string defect, the localized states of
the single-string defect are split into bonding and antibond-
ing combinations. The splitting is proportional to the overlap
integral of wave functions localized at different strings, i.e.,
to the value of �g /g0�2. As a consequence of quantization of
the transverse �relative to the string axis� propagation of car-
riers, four one-dimensional subbands are formed inside the
SC gap: 	=	i���, i=1,2 ,3 ,4, where i is the subband index.

For the sake of simplicity, we express the electron spec-
trum in the form ��K�=���k�+����� and in the following
replace the transverse index � by the subband index, i.e.,
assign ��=�i. Taking into account Eq. �17�, one can write
the variation in DOS caused by the two-strings defect as

�N�	� = �
i
� d��N1�����
	 − 	i���� , �22�

where 	i���=�i+����� is ith branch of the electron spectrum,
which has been defined above as a solution of the equation
��	�=0; the one-dimensional DOS is introduced in conve-
nient way to promote wave vector sums to energy integral,
N�

−1��→�ad� / �2��→�d��N1����, where a is a crystal lat-
tice spacing of the SC. The value �i determines the minimum
of the ith subband with respect to edge of three-dimensional
band of the SC host.

In order to carry out concrete calculations, we adopt for
the band electron energy the parabolic form ��K�= �k2

+�2� / �2m��, where m�
�=m�

� =m� is effective mass near bot-
tom of the band. On the one hand, the effective-mass ap-
proach is quite suited because actual quasiparticle energies
are small as compared to the width of the conduction band,
W: 			W. On the other hand, this assumption allows to
simplify the calculations and obtain analytical results. In-
deed, the functions g0 
Eq. �20�� and g 
Eq. �21�� take the
fairly simple forms

g0 = − N2 ln�1 + E−1�, g = − 2N2K0�R�E� , �23�

where the dimensionless units are used: E= 	�	 /�0, R
=��2m��0; �=	−��, �0 ��0W� is the cutoff energy which
can be related to the column radius r0��2m��0�−1/2, N2
=m�a2 / �2��, and K0��� is the modified Bessel function of
the second kind.

Inserting g0 and g 
Eq. �23�� into expression �18�, one
may present the equation ��	�=0 in the form

�Y − 1�4 − 2�A + B��Y − 1�2 − 4AB�Y − 1� − 2ABCY

+ �A + B − AB�2 − 2AB = 0, �24�

where Y−1=u ln�1+E−1�, A=A�	�= �g /g0�2, B= �JM /U�2,
and u=N2	U	. We notice several specific features of the so-
lutions of Eq. �24�, which are discrete levels energies ��
=�i�. If C�−1, Eq. �24� has four real roots Ei �we label the
solutions such that E1�E2�E3�E4� at sufficiently large
distance R�R4, three roots �E1�E2�E3� in an interval R3
�R�R4, and two roots �E1�E2� in a region R�R3. This
means that there are some characteristic interstring distances
for which a state leaves the band gap and enters the con-
tinuum. At some intermediate point belonging to the interval
�R3 ,R4�, the terms E2 and E3 intersect each other. When the
distance R becomes very large, the energy E tends to the
value E0

��� of the localized electron state in the case of a
single-string defect in the host. We denote the solutions of
Eq. �24� for the case of the parallel �FM� configuration of
magnetic moments of the strings �C=1� by E1,2,3,4

�f� .
For the antiparallel �i.e., AFM� configuration of magnetic

moments of the strings �C=−1� when the total magnetization
of the system is equal to zero, the spin splitting of the local-
ized states disappears and a pair of twofold-degenerate sub-
bands is left 	i

�a����=�i
�a�+�����, i=1,2. We denote the cor-

responding solutions of Eq. �24� as E1,2
�a�. The solution E2

�a�

exists under the condition R�2 / �1−B�, and is such that
E1

�a��E2
�a� for all R and B.

The solutions of Eq. �24� can be obtained numerically. In
Fig. 4 we plot a typical variation in the level positions �i as
a function of the interstring distance � �E vs R� at given
dimensionless interaction constant u and mutual orientation
of the moments C= �1. It is important to notice that E1

�f�

�E1
�a��E2

�f��E3
�f��E2

�a��E4
�f�, as it can be seen in Fig. 4.

In the model under consideration, the DOS inside the bulk
band gap 
Eq. �22�� has a form

�N�	� = �
i

a�2m�

2��	 − �i

h�	 − �i� , �25�

where the sum is carried over the states with �i�0, and h is
the Heaviside function.
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The one-dimensional states split off the band continuum
of the bulk SC are partly filled with quasiparticles having
been transferred from Mn atoms inside the columns and/or
from Mn atoms in the host. Strictly speaking, it would be
necessary to study the system for different mutual orienta-
tions of the magnetic moments M��� /2�, at fixed total num-
ber of electrons in the system, consisting of the SC host and
of the embedded FM strings. However, this procedure is too
complex. Therefore we restrict our analysis to collinear mag-
netic configurations, FM and AFM, and focus only on the
situation when the Fermi level � is fixed below the band
edge of the nondegenerate SC host. In this case, the physical
properties can be described in terms of the excess grand-
canonical thermodynamic potential,

�� = �
−�

�

�	 − ���N�	�d	 , �26�

where �N�	� is read off Eq. �25�. The exchange integral is
calculated as

Ic = ���f� − ���a�, �27�

where ���f� and ���a� are the specific expressions of ��

Eq. �26�� for FM and AFM alignments of the moments
M��� /2�, respectively. After integration, one obtains the ex-
change integral as a function of �,

I��� = I0�2�
i

�Ei
�a� − �̃�3/2 − �

i

�Ei
�f� − �̃�3/2 , �28�

where the sum is carried over the occupied states, Ei
�f ,a���̃,

�̃= 	�	 /�0, and I0=2a�2m��0
3 / �3��. A set of curves I��� 
Eq.

�28�� is represented in Fig. 5, where the dimensionless quan-
tity J��̃�= I���exp�R� / I0, which includes the scaling prefac-
tor exp�R�, is plotted for different values of R.

The most important result concerns the magnitude and
character of the coupling, which strongly depend on the fill-
ing of confinement-induced states 	i and on the interstring
distance. Figure 5 shows that the exchange interaction at
short distance �R�1� is FM, whereas, with increasing inter-

string distance �at given B and u�, the exchange integral I���
as a function of � can change its sign up to three times.
Thus, varying the Fermi level or the interstring distance one
could switch the exchange coupling between FM and AFM.

The asymptotic behavior of the exchange integral at large
interstring distance is given by the expression Ic����exp�
−� /�0

����, where the characteristic length

�0
��� = �2m�a

��
��0�	U	 � 	JM	�−1

�29�

is the scale of the coupling decay in dimensional units. Un-
fortunately, at present, the insufficiency of experimental data
does not allow for an accurate estimate of the physical values
of the various parameters. We can only give a rough estimate
of the characteristic length �0

����1.5–1.8 nm, which is
based on the following parameters: m=0.04m0, a=0.56 nm,
r0�1 nm, and 	U	� 	JM	�3–4 eV.

IV. CONCLUSION

In summary, to qualitatively analyze the magnetic proper-
ties of the phase-separated �Ge,Si�:Mn alloys with self-
organized nanocolumns,12–15 we proposed a model which ac-
counts for the onset of a spin-polarized state within an
isolated nanocolumn, described as an ideal FM string embed-
ded into the SC host. We then considered an effective semi-
phenomenological Hamiltonian to describe the coupling be-
tween the FM string and the SC host and discussed the
mechanism for the exchange coupling between two parallel
strings. We demonstrated that in the case of a nondegenerate
SC host, when the Fermi level is located inside the energy
gap, the quasiparticle transitions between the confinement-
induced spin-polarized one-dimensional states and the three-
dimensional states of the SC host lead to an efficient inter-
string coupling. This could be designated as a “carrier-
confinement-mediated” mechanism of the indirect magnetic
coupling. The related exchange integral can switch its sign
between FM and AFM as the interstring distance or the fill-

FIG. 4. �Color online� The variation in the subband edge posi-
tion Ei

�f��R� and Ei
�a��R� with the interstring distance R at B=0.1 and

u=1. The energy state E3
�f��R� is depicted by the dashed line.

FIG. 5. �Color online� The calibrated exchange integral depen-
dence on the Fermi-level position J��̃� at different values of the
interstring distance R. In the inset is J��̃� at R=1.
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ing of quasi-one-dimensional spin-polarized subbands varies.
The coupling magnitude decays exponentially with the inter-
string distance. We point out that we neglected the presence
of an impurity band in the system. Experimentally, the situ-
ation is far from settled. An insulating behavior of the resis-
tivity as a function of temperature has been reported for
Ge:Mn DMS,3 compatible with an Efros-Shklovski variable-
range hopping conduction mechanism. This behavior would
imply that the Fermi level is located below the mobility edge
of the Mn-induced impurity band. On the other hand, the
variable-range hopping mechanism was questioned, and a
behavior of the resistivity consistent with a percolation
mechanism associated with bound magnetic polarons with
localized holes was proposed.16 Since we have no experi-
mental evidence for the existence of an impurity band in
Ge:Mn DMS with columnar structure, we left the investiga-
tion of the transport properties to a later research, when the
experimental situation will be clearer, and limited our analy-
sis to the exchange mechanism between the Mn-rich col-
umns. We note, on passing, that an impurity band would
enhance the global tendency to ferromagnetism in Ge:Mn
DMS,3 whereas our mechanism accounts for both AFM and
FM orders in these systems. In our opinion, the carrier-
confinement-mediated mechanism of exchange coupling dis-
cussed in this paper may account for the magnetic behavior
in the phase-separated �Ge,Si�:Mn alloys, although some
open problems remain to be solved.

First, we did not address the origin of the columnar struc-
ture of Ge:Mn DMS, and rather assumed its existence as a
starting phenomenological point. In future, it would be inter-
esting to extend our approach and take into account some of
the features considered in Ref. 17, where the problem of the
spinodal decomposition and phase separation in GaMnAs
DMS has been treated at the first-principles level.

Second, the main assumptions of our model and the re-
sults obtained here need to be confirmed by more rigorous ab
initio calculations; in particular, the quasi-one-dimensional
FM character of the spectrum of �Ge,Si�:Mn alloys with self-
organized nanocolumns has to be established. So far, unfor-
tunately, these calculations have not been performed.

Third, magnetic and transport properties of �Ge,Si�:Mn
alloys with self-organized nanocolumns are highly sensitive
to the effect of magnetic impurities existing into the SC ma-

trix; this effect was neglected in our analysis. As it was men-
tioned in Sec. I, an AFM coupling between the neighboring
nanocolumns and a giant positive MR was observed in the
unannealed Ge:Mn films.15 The acceptors �Mn atoms replac-
ing Ge� and donors �interstitial Mn atoms� in these materials
almost completely compensate for each other, while the
Fermi level is located lower than the mobility threshold. Due
to the annealing, the Mn atoms are redistributed in the bulk
and between the matrix and the nanocolumns, as a result of
which the fraction of uncompensated acceptors increases, the
FM coupling arises between the nanocolumns, and a small
negative MR appears. The carrier-confinement-mediated
mechanism allows the alternation of the sign of the exchange
coupling between nanocolumns to be associated with the
change in the position of the Fermi level even in the case of
a nondegenerate SC matrix since the sign of the exchange
coupling can vary with the filling of spin-polarized states. On
the other hand, if the Fermi level after annealing lies above
the mobility threshold and the metal-insulator transition oc-
curs, a FM coupling between nanocolumns is accounted for
by the standard exchange mechanism of the Ruderman-
Kittel-Kasuya-Yoshida �RKKY� type. We point out that a
RKKY exchange mechanism mediated by low-density carri-
ers strongly depends on the degree of compensation in the
SC host and disappears in nondegenerate DMS with almost
complete compensation. On the other hand, our mechanism
is almost independent of the carrier concentration in the host.

A final comment concerns the transport anisotropy in
DMS with columnar topology. In ideal structures, our model
predicts a metallic behavior along the columns, and an insu-
lating �possibly tunneling� behavior in the directions perpen-
dicular to the columns. However, in real systems, composi-
tional and structural fluctuations of the columnar structure
would lead to carrier localization inside the quasi-one-
dimensional columns, resulting in an overall insulating be-
havior.
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